Calculating transcription factor binding maps for chromatin
نویسندگان
چکیده
Current high-throughput experiments already generate enough data for retrieving the DNA sequence-dependent binding affinities of transcription factors (TF) and other chromosomal proteins throughout the complete genome. However, the reverse task of calculating binding maps in a chromatin context for a given set of concentrations and TF affinities appears to be even more challenging and computationally demanding. The problem can be addressed by considering the DNA sequence as a one-dimensional lattice with units of one or more base pairs. To calculate protein occupancies in chromatin, one needs to consider the competition of TF and histone octamers for binding sites as well as the partial unwrapping of nucleosomal DNA. Here, we consider five different classes of algorithms to compute binding maps that include the binary variable, combinatorial, sequence generating function, transfer matrix and dynamic programming approaches. The calculation time of the binary variable algorithm scales exponentially with DNA length, which limits its use to the analysis of very small genomic regions. For regulatory regions with many overlapping binding sites, potentially applicable algorithms reduce either to the transfer matrix or dynamic programming approach. In addition to the recently proposed transfer matrix formalism for TF access to the nucleosomal organized DNA, we develop here a dynamic programming algorithm that accounts for this feature. In the absence of nucleosomes, dynamic programming outperforms the transfer matrix approach, but the latter is faster when nucleosome unwrapping has to be considered. Strategies are discussed that could further facilitate calculations to allow computing genome-wide TF binding maps.
منابع مشابه
Blurring of High-Resolution Data Shows that the Effect of Intrinsic Nucleosome Occupancy on Transcription Factor Binding is Mostly Regional, Not Local
Genome wide maps of nucleosome occupancy in yeast have recently been produced through deep sequencing of nuclease-protected DNA. These maps have been obtained from both crosslinked and uncrosslinked chromatin in vivo, and from chromatin assembled from genomic DNA and nucleosomes in vitro. Here, we analyze these maps in combination with existing ChIP-chip data, and with new ChIP-qPCR experiments...
متن کاملChromatin profiling in model organisms.
The correct control of gene expression is essential for the proper development of organisms. Abnormal expression of genes can lead to cancerous growth and certain diseases. To understand how gene expression is controlled on a genome-wide scale, methods for assaying transcription factor binding sites are required. There are two prevailing techniques for mapping protein-chromatin interactions, Ch...
متن کاملExtracting transcription factor targets from ChIP-Seq data
ChIP-Seq technology, which combines chromatin immunoprecipitation (ChIP) with massively parallel sequencing, is rapidly replacing ChIP-on-chip for the genome-wide identification of transcription factor binding events. Identifying bound regions from the large number of sequence tags produced by ChIP-Seq is a challenging task. Here, we present GLITR (GLobal Identifier of Target Regions), which ac...
متن کاملA simple method for generating high-resolution maps of genome-wide protein binding
Chromatin immunoprecipitation (ChIP) and its derivatives are the main techniques used to determine transcription factor binding sites. However, conventional ChIP with sequencing (ChIP-seq) has problems with poor resolution, and newer techniques require significant experimental alterations and complex bioinformatics. Previously, we have used a new crosslinking ChIP-seq protocol (X-ChIP-seq) to p...
متن کاملZNF143 provides sequence specificity to secure chromatin interactions at gene promoters
Chromatin interactions connect distal regulatory elements to target gene promoters guiding stimulus- and lineage-specific transcription. Few factors securing chromatin interactions have so far been identified. Here, by integrating chromatin interaction maps with the large collection of transcription factor-binding profiles provided by the ENCODE project, we demonstrate that the zinc-finger prot...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Briefings in bioinformatics
دوره 13 2 شماره
صفحات -
تاریخ انتشار 2012